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Feature selection can identify essential features and reduce the dimensionality of features,
improving the classification ability of a learning model. In this study, we consider data with
a preference-order relation, i.e., ordered data. In the big data era, ordered data contain
noise and exhibit heterogeneous features (including numerical and categorical features)
and dynamic characteristics (i.e., new objects are added and obsolete objects are removed
with evolving time). The dominance-based neighborhood rough set (DNRS) considers the
preference order relation of heterogeneous features and demonstrates fault tolerance;
thus, it can be applied well to heterogeneous feature selection in ordered data. At present,
DNRS-based heterogeneous feature selection methods are only used for static ordered data.
For dynamic ordered data, existing heterogeneous feature selection approaches are highly
time-consuming because they are required to recalculate knowledge from scratch when
multiple objects vary. Motivated by this issue, we utilize a matrix-based method in this
work to study incremental heterogeneous feature selection based on DNRS in dynamic
ordered data. First, we define neighborhood dominance conditional entropy (NDCE) as
the uncertainty measure and introduce a non-monotonic feature selection strategy based
on this measure. Second, the neighborhood dominance relation matrix and its diagonal
matrix are defined to calculate NDCE in matrix form. Third, the updating mechanisms of
the diagonal matrix are studied when objects vary and used to update NDCE. Lastly, two
incremental feature selection algorithms are proposed when multiple objects are added
to or deleted from heterogeneous ordered data. Experiments are performed on public data
sets. Experimental results verify that the proposed incremental algorithms are effective
and efficient for updating feature subsets in dynamic heterogeneous ordered data.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Rough set theory (RST), which was proposed by Pawlak in 1982, is an effective mathematical tool for classification learn-
ing in uncertain and incomplete data [22]. Objects with the same description based on equivalence relations compose basic
granules of knowledge, which are used to describe the concepts approximately. Thus, knowledge granules are the basic
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concept of RST. To investigate the general properties of knowledge granules, Polkowski et al. proposed two research
schemes: logical approximate reasoning [27,23] and rough neural computing [24]. Furthermore, Polkowski et al. developed
a systematic study of granule within rough mereology [25,26]. The continuous improvements in granulation technology in
recent years, such as the relation among different granular mechanisms [6,45], multi-granulation decision-theoretic rough
sets [14], a lattice model based on knowledge distance [31], and grouping granular structures [28], have promoted the devel-
opment of RST [33,29]. The dominance-based rough set approach (DRSA) proposed by Greco et al. is an important extension
of RST that has been successfully applied to multi-criteria decision-making (MCDM) [11]. The strict partial order relation is
implemented between attribute values in DRSA; thus, this model is not fault-tolerant when processing MCDM with numer-
ical data. The primary reason for this defect is that a minor fluctuation of an attribute value in DRSA may change the relations
between objects due to an error, causing basic knowledge granules to change, and ultimately enabling decision makers to
obtain wrong decision information. Such errors are inevitable during data collection, particularly for numerical data. To over-
come this deficiency, Chen et al. introduced the idea of neighborhood into DRSA and proposed the dominance-based neigh-
borhood rough set (DNRS) [4]. In DNRS, neighborhood dominance relation considers the partial order of numerical and
categorical data and the degree of preference between them. This is, DNRS qualitatively and quantitatively considers the par-
tial order relation of heterogeneous data. Hence, DNRS is more suitable for multi-criteria decision analysis. In particular,
DNRS-based feature selection is effective for heterogeneous ordered data. Feature selection approaches suitable for dynamic
heterogeneous ordered data sets have not been studied at present. Accordingly, the current work focuses on an incremental
heterogeneous feature selection approach based on DNRS for dynamic ordered data.

In the field of data mining, uncertainty measures are important evaluating tools that can quantify data inconsistency. As a
common uncertainty measure, information entropy has been widely used in feature selection algorithms. Related studies
have been extended since Shannon proposed information entropy [32]. Liang et al. presented complementary and combina-
tion entropies based on RST [30]. Hu et al. studied the rank entropies based on DRSA [12]. However, existing information
entropy measures are unsuitable for the classification of ordered heterogeneous data sets because they do not simultane-
ously consider partial order relation and degree of preference among samples. To address this deficiency, we propose NDCE
as the uncertainty measure of the feature selection algorithm in our research. Moreover, given that the matrix form of infor-
mation can simplify the calculation process and intuitively represent the construction of a method, matrix-based computing
technology is widely used in incremental learning. For example, the researchers in [16,40] used matrix-based methods to
study incremental learning approaches. Considering the advantages of matrix form, the current work also utilizes this form
to study the incremental mechanism of feature selection.

As a common data preprocessing technology, feature selection has elicited widespread attention. This technique can
delete redundant features and achieve the objectives of reducing dimensionality and improving classification accuracy.
RST-based feature selection (also called attribute reduction) methods have been extensively studied in the past decades
[7,37,8,20,49]. With the diversification of data types, heterogeneous (mixed) feature selection methods has become a pop-
ular research topic [13,47,50,2]. However, the partial order relation of heterogeneous features is not considered in these pre-
vious studies. Chen et al. proposed a DNRS-based feature selection method that can efficiently complete heterogeneous
feature selection tasks in a given ordered data (i.e., static ordered data) [4]. Technologies for gathering, storing, and process-
ing information continues to evolve with the development of the information age. In general, heterogeneous ordered data
sets dynamically evolve over time. For example, students’ grades are typical heterogeneous ordered data that include numer-
ical (e.g. score) and categorical (e.g. grade A, B, and C) data. With the graduation and enrollment of students, this data exhibit
dynamic characteristics, making it dynamic heterogeneous ordered data. However, existing DNRS-based heterogeneous fea-
ture selection methods for such dynamic data sets are required to recalculate existing knowledge. Such process is time-
consuming or even infeasible. Therefore, an effective incremental feature selection approach is urgently necessary to effi-
ciently obtain a new feature subset from dynamic heterogeneous ordered data.

As a technique for quickly acquiring knowledge from dynamic data, incremental learning has been widely studied by
scholars [5,46,42,15]. Researchers have proposed many incremental learning algorithms in the past decade; among which,
incremental feature selection algorithms are among the important representatives. Numerous incremental feature selection
algorithms are available, and they can be roughly divided into three categories: object-oriented, feature-oriented, and fea-
ture value-oriented varieties. (1) Object-oriented varieties. On the basis of information entropy, Liang et al. developed an
incremental updating feature subset approach when adding a group sample [19]. Chen et al. extended two incremental attri-
bute reduction algorithms based on variable precision rough set model and fuzzy rough set model, respectively [3,44]. Yang
et al. studied an incremental feature selection approach based on an active sample selection principle [43]. Shu et al. intro-
duced dependency-based incremental updating methods to derive a new reduct [34]. Jing et al. developed a knowledge
granularity-based incremental feature selection method with a multi-granulation view [17]. (2) Feature-oriented varieties.
Wang et al. proposed an effective attribute reduction algorithm based on information entropy for data sets with dynamically
increasing attributes [39]. In dynamic covering decision information systems, Lang et al. studied incremental algorithms
based on related families [18]. Zeng et al. investigated a fuzzy rough set-based incremental attribute reduction method
on hybrid data [48]. (3) Feature value-oriented varieties. Wang et al. proposed an effective feature selection algorithm by
using three representative entropies [38]. Wei et al. presented a dynamic feature selection approach by using discernibility
matrix [41]. Cai et al. developed two incremental attribute reduction approaches for coarsening and refining covering gran-
ularity [1]. Shu et al. proposed RST-based incremental feature selection methods for a dynamic incomplete information sys-
tem [35]. Notably, the aforementioned incremental feature selection methods are only applicable to dynamic data sets with
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equivalence or similarity relation. By contrast, these methods are evidently ineffective for dynamic heterogeneous data sets
with partial order relation.

As indicated above, no research about DNRS-based incremental approaches for heterogeneous feature selection has been
reported, motivating the current study. Accordingly, we investigate DNRS-based incremental heterogeneous feature selec-
tion approaches in an ordered decision system with the variation of multiple objects. The major contributions of this study
are as follows. (i) We propose NDCE and then introduce a non-monotonic feature selection method based on it. (ii) We pre-
sent the definitions of the neighborhood dominance relation matrix and its diagonal matrix and then propose a method for
calculating NDCE in matrix form. (iii) The updating mechanisms of matrix-based NDCE are investigated when multiple
objects are added to or deleted from a heterogeneous ordered decision system. On this basis, two incremental algorithms
for feature selection are further designed. (iv) The experimental comparison with a heuristic algorithm indicates that the
proposed algorithms can efficiently obtain a feature subset with a comparable classification effect.

The remainder of this paper is organized as follows. Section 2 reviews related studies. In Section 3, NDCE is defined and
NDCE-based non-monotonic feature selection method is proposed. Then, the neighborhood dominance relation matrix and
its diagonal matrix are defined, several related corollaries are presented and proved, and a matrix-based heuristic feature
selection algorithm is introduced. The updating mechanisms of the matrix-based NDCE are proposed in Section 4. In Sec-
tion 5, two incremental feature selection algorithms are developed. The effectiveness and efficiency of the developed incre-
mental algorithms are experimentally demonstrated in Section 6. The final section concludes the study and outlines future
research.

2. Preliminaries

In this section, we briefly review relevant knowledge in DNRS [4].

2.1. Heterogeneous ordered decision system and its normalization

A heterogeneous decision system is a 4-tuple H ¼ U;C [ df g;V ; fð Þ, where U ¼ x1; x2; . . . ; xnf g is a non-empty finite set of
objects; C [ df g is a non-empty finite set of features, with C ¼ Cnu [ Cca denoting a conditional feature set, Cnu denoting a
numerical feature set, Cca denoting a categorical feature set, d denoting a decision feature, and C \ d ¼£;
V ¼ S

ak2C[ df g
Vak ;Vak is the domain of feature ak; f : U � C [ df gð Þ ! V is the information function with f xi; akð Þ 2 Vak , and

f xi; akð Þ is the feature value of xi under ak, which is also denoted by v ik.
In a heterogeneous decision system, if the domain of a feature is arranged in accordance with an increasing or decreasing

preference, then the feature is a criterion. A heterogeneous decision system is called a heterogeneous ordered decision sys-
tem (HODS) if all the features are criteria. We denote a HODS as H� ¼ U;C [ df g;V ; fð Þ.

In HODS, we need to normalize the data values to [0,1] to calculate the distance between objects. In the following para-
graphs, we introduce the normalization of numerical and categorical data in HODS.

� Normalization of numerical data. Given a HODS, for any ak 2 Cnu and xi 2 U;min Vak

� �
denotes the minimum value in

Vak ;max Vak

� �
denotes the maximum value in Vak , and the normalized value of v ik is defined as
v̂ ik ¼
v ik � k1min Vak

� �
k2max Vak

� �� k1min Vak

� � : ð1Þ
� Normalization of categorical data. Given a HODS, for any al 2 Cca, the feature value range of al is
Val ¼ v l1 ;v l2 ; . . . ;v lr ; . . . ;v lq

� �
, where v l1 � v l2 � . . . � v lr . . . � v lq , the normalized value of v lr is defined as
v̂ lr ¼
r � k1

k2jVal j � k1
; ð2Þ

where 0 < k1 < 1; k2 > 1.
In practical applications, the value of a criterion is typically within a certain range, such as physical examination indica-
tors, students test scores, and risk level assessments. Therefore, whenmultiple objects are added to a HODS, we normalize
the added object set by using themin Val

� �
;max Val

� �
, and jVal j of the original HODS as fixed values. When multiple objects

are deleted from the HODS, we delete the objects from the original normalized HODS without renormalizing the HODS
after the objects are deleted. To avoid further errors, we set the corresponding parameters k1 and k2 to reduce min Val

� �
and expand max Val

� �
; jVal j. In summary, the k1min Val

� �
; k2max Val

� �
, and k2jVal j of the original HODS are used as fixed val-

ues to normalize the changed HODS. Normalized distance between objects. Given a HODS, for any xi; xj 2 U; P#C, the nor-
malized distance between xi and xj under P is defined as
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d̂P xi; xj
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXjPj
k¼1
jf̂ xi; akð Þ � f̂ xj; ak

� �jqq

vuut ; ð3Þ

where (1) it is called the Manhattan distance if q ¼ 1 and (2) the Euclidean distance if q ¼ 2. Furthermore, the Chebychev

distance is defined as d̂P xi; xj
� � ¼ maxak2P jf̂ xi; akð Þ � f̂ xj; ak

� �j� �
.

2.2. Approximations in DNRS

Given a HODS H� ¼ U;C [ df g;V ; fð Þ, for any P#C and P–£, the neighborhood dominance relation N�Pd [4] on P is defined
as
N�Pd ¼ x; yð Þ 2 U � Ujd̂P x; yð ÞP d ^ f̂ x; að ÞP f̂ y; að Þ;8a 2 P
n o

; ð4Þ
where 0 6 d 6 1. Note that objects in the HODS follow the traditional dominance relation under decision feature d, which is
denoted as
N�d ¼ x; yð Þ 2 U � Ujf x; dð ÞP f y; dð Þf g; ð5Þ

and the neighborhood dominance relation under feature set P [ d is denoted as
N�Pd[d ¼ x; yð Þ 2 U � Ujd̂P x; yð ÞP d ^ f̂ x; að ÞP f̂ y; að Þ ^ f x; dð ÞP f y; dð Þ;8a 2 P
n o

: ð6Þ
From Eq. (4), the neighborhood dominance relation N�Pd degenerates into the traditional dominance relation when d ¼ 0,

i.e., N�Pd ¼ x; yð Þ 2 U � Ujf̂ x; að ÞP f̂ y; að Þ;8a 2 P
n o

, which is reflexive, antisymmetric, and transitive. The neighborhood dom-

inance relation N�Pd is anti-reflexive, antisymmetric, and transitive when 0 < d 6 1. Hence, the neighborhood dominance rela-
tion is a generalized dominance relation. In this study, we set 0 < d 6 1 when calculating the neighborhood dominance
relation between objects.

Knowledge granules are generated via binary relation. In DNRS, knowledge granules are called the neighborhood domi-
nating and dominated sets [4], which are defined respectively as follows
NþPd xð Þ ¼ y 2 UjyN�Pdx
n o

; ð7Þ

N�Pd xð Þ ¼ y 2 UjxN�Pdy
n o

: ð8Þ
Analogously, the dominating and dominated sets of x induced by d and P [ d are denoted respectively as

Nþd xð Þ ¼ y 2 UjyN�d x
� �

;NþPd[d xð Þ ¼ y 2 UjyN�Pd[dx
n o

and N�d xð Þ ¼ y 2 UjxN�d y
� �

;N�Pd[d xð Þ ¼ y 2 UjxN�Pd[dy
n o

.

The neighborhood dominating and dominated sets are illustrated in Fig. 1, where the conditional feature set is
P ¼ a1; a2f g. In Fig. 1, the x-coordinate and y-coordinate are the domains of features a1 and a2, respectively. Points denote
objects in the universe, where xk is an arbitrary object and d is distance. In Fig. 1, objects in the universe are divided into
five groups: G1;G2;G3;G4, and G5. From Fig. 1, we can clearly see that the neighborhood dominating and dominated sets
of xk under feature set P are G2 and G4, respectively, i.e., N

þ
Pd

xkð Þ ¼ G2 and N�Pd xkð Þ ¼ G4.

Property 1. For neighborhood dominating and dominated sets, the following properties hold.
(1) Given P#C, if 0 < d1 < d2 6 1, then NþPd2 xð Þ#NþPd1 xð Þ, N�Pd2 xð Þ#N�Pd1 xð Þ, NþPd2[d xð Þ#NþPd1[d xð Þ, and N�Pd2[d xð Þ#N�Pd1[d xð Þ;
(2) Given 0 < d 6 1, for any P#C;NþPd xð Þ \ Nþd xð Þ ¼ NþPd[d xð Þ and N�Pd xð Þ \ N�d xð Þ ¼ N�Pd[d xð Þ.

The Property 1 (1) introduces the monotonicity characteristic between the neighborhood dominating/dominated set and
d, which indicates that the cardinality of the neighborhood dominating/dominated set decreases as d increases. The Property
1 (2) shows the relation between the neighborhood dominating/dominated set induced independently by different feature
subsets and that induced by a combination of these feature subsets. The dominating/dominated set and the relation between
the dominating/dominated set induced by different feature subsets are important elements in calculating NDCE. The afore-
mentioned properties lay the foundation for further discussing the properties of NDCE in Proposition 1.

Given that d is a categorical feature, U can be divided into a family of equivalent classes by d, denoted as Cl ¼ Clt ; t 2 Tf g,
where T ¼ 1;2; . . . ; jVdjf g. The decision classes are also preference-ordered, i.e., 8r; s 2 T , if r > s, then 8x 2 Clr is preferred
over 8y 2 Cls. In DNRS, the sets to be approximated are upward and downward unions [11], which are denoted as
Cl�t ¼

S
t0Pt

Clt0 ; Cl
�
t ¼

S
t06t

Clt0 8t; t0 2 Tð Þ. The statement x 2 Cl�t indicates that x belongs to at least class Clt , whereas x 2 Cl�t indi-

cates that x belongs to at most class Clt .



Fig. 1. The neighborhood dominating set and neighborhood dominated set.
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Given a HODS H� ¼ U;C [ df g;V ; fð Þ, for any P#C, the lower and upper approximations of Cl�t t 2 Tð Þ are defined respec-
tively as follows
NPd Cl�t
� �

¼ x 2 UjNþPd xð Þ#Cl�t
n o

; ð9Þ

NPd Cl�t
� �

¼ x 2 UjNþPd xð Þ \ Cl�t –£
n o

: ð10Þ
The lower and upper approximations of Cl�t t 2 Tð Þ are defined respectively as follows
NPd Cl�t
� �

¼ x 2 UjN�Pd xð Þ#Cl�n
n o

; ð11Þ

NPd Cl�t
� �

¼ x 2 UjN�Pd xð Þ \ Cl�n–£
n o

: ð12Þ
3. Non-monotonic feature selection in a HODS

In data mining, the redundant features in a data set may cause overfitting of the classification and increase computational
costs. Feature selection is an efficient method for selecting the necessary features while keeping the discriminative capability
of knowledge unchanged, which is a key step in data preprocessing. In this section, we propose a non-monotonic feature
selection method based on NDCE. Considering that the matrix form of information can simplify the calculation process
and intuitively represent the construction of a method, we present a matrix-based method for calculating NDCE, called
matrix-based NDCE (MNDCE). On this basis of this method, we then introduce a matrix-based heuristic feature selection
algorithm in a HODS.

3.1. Non-monotonic feature selection based on NDCE

In this subsection, we first define NDCE and prove its non-monotonicity. Then, we design a non-monotonic feature selec-
tion method for a HODS. Lastly, the inner and outer significance measures are presented. In [4], the knowledge granules gen-
erated via neighborhood dominance relation did not satisfy monotonicity because the authors used the Euclidean distance to
construct neighborhood dominance relation. To overcome this deficiency, we define a new distance between objects in a
HODS.

Definition 1. Given a HODS H� ¼ U;C [ df g;V ; fð Þ, for any xi; xj 2 U; P#C, the distance between xi and xj under P is defined
as
d̂P xi; xj
� � ¼ minak2Pjf̂ xi; akð Þ � f̂ xj; ak

� �j: ð13Þ
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Subsequently, we prove the monotonicity of the knowledge granules generated via neighborhood dominance relation
based on the proposed distance.
Property 2. For any P;Q #C and 8x 2 U, given d 2 0;1ð � the following properties hold.

(1) If P#Q , then NþQd
xð Þ#NþPd xð Þ and N�Qd

xð Þ#N�Pd xð Þ;
(2) NþPd xð Þ \ NþQd

xð Þ ¼ NþP[Qð Þd xð Þ and N�Pd xð Þ \ N�Qd
xð Þ ¼ N�P[Qð Þd xð Þ.
Proof. (1) Assuming 8y 2 NþQd
xð Þ, according to Eq. (4), we have d̂Q x; yð ÞP d and f̂ x; að Þ 6 f̂ y; að Þ 8a 2 Qð Þ. Known P#Q , based

on Definition 1, we can determine that d̂P x; yð ÞP d̂Q x; yð ÞP d and f̂ x; að Þ 6 f̂ y; að Þ 8a 2 Pð Þ hold. According to Eq. (4), we have
y 2 NþPd xð Þ. Thus, we can obtain NþQd

xð Þ#NþPd xð Þ. Analogously, the N�Qd
xð Þ#N�Pd xð Þ can be proved. (2) First, we prove

NþPd xð Þ \ NþQd
xð Þ#NþP[Qð Þd xð Þ. Based on (1), we have NþPd xð Þ#NþP[Qð Þd xð Þ and NþQd

xð Þ#NþP[Qð Þd xð Þ. Thus, we can easily determine

that NþPd xð Þ \ NþQd
xð Þ#NþP[Qð Þd xð Þ holds. Second, we prove NþP[Qð Þd xð Þ#NþPd xð Þ \ NþQd

xð Þ. Assuming 8y 2 NþP[Qð Þd xð Þ, according to

Eq. (4), we have d̂P[Q x; yð ÞP d and f̂ x; að Þ 6 f̂ y; að Þ 8a 2 P [ Qð Þ. Due to P;Q # P [ Q , based on Definition 1, we can get that

d̂P x; yð ÞP d̂P[Q x; yð ÞP d; d̂Q x; yð ÞP d̂P[Q x; yð ÞP d; f̂ x; að Þ 6 f̂ y; að Þ 8a 2 Pð Þ, and f̂ x; að Þ 6 f̂ y; að Þ 8a 2 Qð Þ hold. According to
Eq. (4), we have y 2 NþPd xð Þ and y 2 NþQd

xð Þ. Hence, the NþP[Qð Þd xð Þ#NþPd xð Þ \ NþQd
xð Þ holds. In summary, we can determine that

NþPd xð Þ \ NþQd
xð Þ ¼ NþP[Qð Þd xð Þ holds. Similarly, we also determine N�Pd xð Þ \ N�Qd

xð Þ ¼ Nd�
P[Q xð Þ holds. h

The Property 2 (1) indicates the monotonicity characteristic between the neighborhood dominating/dominated set and
feature subsets. The Property 2 (2) presents the relation between the neighborhood dominating/dominated set induced
by any two conditional feature subsets and that induced by a combination of the two conditional feature subsets, which will
be used to prove Proposition 2.

In [12], ascending/decreasing rank conditional entropies were proposed to measure the ranking consistency of objects
under conditional and decision features in an ordered decision system. In the current study, we only consider ascending rank
conditional entropy (also called dominance conditional entropy) as the uncertainty measure. However, constructing this
measure based on neighborhood dominance relation is inappropriate. Neighborhood dominance relation does not satisfy
reflexivity; thus, knowledge granules generated by such relation may be an empty set in the worst case scenario. In such
case, the denominator of the measure is zero, which is senseless. To overcome this issue, we propose NDCE based on the
ascending rank conditional entropy.

Definition 2. Given a HODS H� ¼ U;C [ df g;V ; fð Þ, for any P#C, NDCE of P to d is defined as
NH�djPd Uð Þ ¼ � 1
jUj

Xn
i¼1

log
jNþd xið Þ \ NþPd xið Þj þ 1

jNþPd xið Þj þ 1
¼ � 1
jUj

Xn
i¼1

log
jNþd[Pd xið Þj þ 1

jNþPd xið Þj þ 1
; ð14Þ
where j 	 j represents the number of elements in the set 	.
From Definition 2, we find that NDCE in a HODS reflects the degree of ranking consistency of object set, which is deter-

mined from the information provided by the conditional feature set and the decision feature. The formula
jNþ

d
xið Þ\NþPd xið Þjþ1
jNþPd xið Þjþ1

essentially determines the degree of ranking consistency. From Eq. (14), we easily determine that the value of NH�djPd Uð Þ is
inversely proportional to the degree of ranking consistency, where NH�djPd Uð ÞP 0. That is, the smaller the value of

NH�djPd Uð Þ, the higher the degree of ranking consistency, also indicating that conditional feature set P provides more accurate
ranking information for the object set, and vice versa.

Proposition 1. For any P#Q #C;8d 2 0;1ð �;NH�djPd Uð Þ 6 NH�djQd
Uð Þ or NH�djPd

Uð ÞP NH�djQd
Uð Þ is uncertain, i.e., NDCE

dissatisfies monotonicity.
Proof. From Definition 2, we can get that
M ¼ NH�djQd
Uð Þ � NH�djPd Uð Þ

¼ � 1
jUj
Xn

i¼1
log

jNþ
d[Qd

xið Þjþ1
jNþQd

xið Þjþ1 þ
1
jUj
Xn
i¼1

log
jNþ

d[Pd
xið Þjþ1

jNþPd xið Þjþ1

¼ 1
jUj
Xn
i¼1

log
jNþ

d[Pd
xið Þjþ1

jNþPd xið Þjþ1 � log
jNþ

d[Qd
xið Þjþ1

jNþQd
xið Þjþ1

	 

:
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Assuming that g1 xið Þ ¼
jNþ

d[Pd
xið Þjþ1

jNþPd xið Þjþ1 and g2 xið Þ ¼
jNþ

d[Qd
xið Þjþ1

jNþQd
xið Þjþ1 . According to Property 1 (2), we can obtain that Nþd[Pd xið Þ#NþPd xið Þ and

Nþd[Qd
xið Þ#NþQd

xið Þ. Obviously, 0 < g1 xið Þ 6 1 and 0 < g2 xið Þ 6 1. Hence, it can be obtained that

M ¼ 1
jUj
Pn

i¼1 log g1 xið Þ � log g2 xið Þð Þ ¼ 1
jUj
Pn

i¼1 log
g1 xið Þ
g2 xið Þ. Due to 0 < g1 xið Þ; g2 xið Þ 6 1, then the g1 xið Þ

g2 xið ÞP 1 g1 xið Þ
g2 xið Þ 6 1

� �
is uncertain.

So the M P 0 M 6 0ð Þ is uncertain. Therefore, the NDCE does not satisfy monotonicity. h

Proposition 1 proves that NDCE is non-monotonic, and it is the basis for the definition of the following reduct. In [36], a
non-monotonic feature selection method that is applicable to non-monotonic uncertainty measures was proposed. Consid-
ering that the proposed uncertainty measure is non-monotonic, we construct a feature selection method based on this mea-
sure, called non-monotonic feature selection based on NDCE.

Definition 3. Given a HODS H� ¼ U;C [ df g;V ; fð Þ, for any B#C, the B is a reduct of H� if it satisfies

(1) NH�djBd Uð Þ 6 NH�djCd
Uð Þ,

(2) 8a 2 B;NH�dj B�að Þd Uð Þ > NH�djBd Uð Þ.

Condition (1) ensures that the selected feature subset has higher or at least the same ranking consistency power as the
whole feature set; the condition (2) ensures that all features in the selected feature subset are indispensable, indicating that
we cannot delete any features from the selected feature subset; otherwise, ranking consistency power will decrease. There-
fore, the selected feature subset is called a reduct if it satisfies the two aforementioned conditions. If the selected feature
subset only satisfies Condition (1), then it is a relative reduct.

In the feature selection process, the informative features can be obtained through the feature significance measures,
which are defined as follows.

Definition 4. Given a HODS H� ¼ U;C [ df g;V ; fð Þ, for any B#C and 8a 2 B, the inner significance of a in B is defined as
sig�Uinner a;B;dð Þ ¼ NH�dj B�að Þd Uð Þ � NH�djBd Uð Þ: ð15Þ
In addition, the core of the feature set B is represented as CoreB ¼ a 2 Bjsig�Uinner a;B; dð Þ > 0
n o

.

Definition 5. Given a HODS H� ¼ U;C [ df g;V ; fð Þ, for any B#C and 8a 2 C � Bð Þ, the outer significance of a to B is defined as
sig�Uouter a;B;dð Þ ¼ NH�djBd Uð Þ � NH�dj B[að Þd Uð Þ: ð16Þ

In H� ¼ U;C [ df g;V ; fð Þ;8a 2 C, in accordance with the general heuristic feature selection strategy, we can determine

that if sig�Uinner a;C; dð Þ > 0, then a 2 CoreC , i.e., a is an indispensable feature. Then, a reduct can be gained based on CoreC by
gradually adding the selected feature subset with the highest outer significance to CoreC .
3.2. Matrix-based computation of NDCE

In this section, we first define the neighborhood dominance relation matrix and its diagonal matrix in a HODS. Then, sev-
eral related properties and corollaries are presented and proved. We also provide an example to explain the proposed
method.

Definition 6. Given a HODS H� ¼ U;C [ df g;V ; fð Þ, for any P#C, the neighborhood dominance relation matrix with respect

to the neighborhood dominance relation N�Pd
is defined as R�PdU ¼ rPd

i;jð Þ
h i

n�n
, where
rPdi;jð Þ ¼
1; xjN

�
Pd
xi;

0; otherwise:

(
ð17Þ
Analogously, the dominance relation matrix R�dU is induced by the traditional dominance relation N�d , and the neighbor-

hood dominance relation matrix R
�Pd[d
U is induced by the neighborhood dominance relation N�Pd[d. Their expressions are sim-

ilar to Eq. (17). In fact, R�PdU is a matrix representation of the neighborhood dominance relation N�Pd on U.
Property 3. For R�PdU ¼ rPd

i;jð Þ
h i

n�n
, the following properties hold.

(1) n ¼ jUj;
(2) rPdi;ið Þ ¼ 0;
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(3)
Pn

j¼1r
Pd
i;jð Þ ¼ jNþPd xið Þj and

Pn
i¼1r

Pd
i;jð Þ ¼ jN�Pd xj

� �j.
Property 3 contains three properties of the neighborhood dominance relation matrix. These properties are used to con-

struct NDCE in matrix form.

Definition 7. Given a HODS H� ¼ U;C [ df g;V ; fð Þ, for any P;Q #C, one can obtain two neighborhood dominance relation

matrices R�Pd
U ¼ rPd

i;jð Þ
h i

n�n
and R

�Qd
U ¼ rQd

i;jð Þ
h i

n�n
, respectively. Then the ‘‘^” operation between them is defined as
R
�Pd
U ^ R

�Qd
U ¼ min rPdi;jð Þ; r

Qd
i;jð Þ

n oh i
n�n

: ð18Þ
In particular, for any P#C, the ‘‘^” operation between R
�Pd
U and R�dU is similarly defined as
R
�Pd
U ^ R�dU ¼ min rPdi;jð Þ; r

d
i;jð Þ

n oh i
n�n

: ð19Þ
Proposition 2. For any P;Q #C, the R
� P[Qð Þd
U ¼ R

�Pd
U ^ R

�Qd
U and R

�Pd[d
U ¼ R

�Pd
U ^ R�dU hold.
Proof. From Definition 6, R� P[Qð Þd
U ¼ r P[Qð Þd

i;jð Þ

h i
n�n

. If r P[Qð Þd
i;jð Þ ¼ 1, i.e., xj 2 NþP[Qð Þd xið Þ. According to Property 2 (2), we have

xj 2 NþPd xið Þ and xj 2 NþQd
xið Þ, i.e., rPdi;jð Þ ¼ 1 and rQd

i;jð Þ ¼ 1. So we have r P[Qð Þd
i;jð Þ ¼ min rPdi;jð Þ; r

Qd
i;jð Þ

n o
¼ 1, and vice versa. If r P[Qð Þd

i;jð Þ ¼ 0,

i.e., xj R NþP[Qð Þd xið Þ, that is, xj R NþPd xið Þ or xj R NþQd
xið Þ, i.e., rPdi;jð Þ ¼ 0 or rQd

i;jð Þ ¼ 0. So we can determine that

r P[Qð Þd
i;jð Þ ¼ min rPdi;jð Þ; r

Qd
i;jð Þ

n o
¼ 0, and vice versa. Thus, we can obtain that r P[Qð Þd

i;jð Þ ¼ min rPdi;jð Þ � rQd
i;jð Þ

n o
, i.e., R� P[Qð Þd

U ¼ R
�Pd
U ^ R�Qd

U

holds. Similarly, we can prove R
�Pd[d
U ¼ R

�Pd
U ^ R�dU holds. h

Proposition 2 proves the feasible of the ‘‘^” operation between neighborhood dominance relation matrices with respect to
two different feature subsets. Subsequently, we will provide the definition of the diagonal matrix of the neighborhood dom-
inance relation matrix.

Definition 8. Given a HODS H� ¼ U;C [ d;V ; fð Þ, for any P#C, the diagonal matrix of the neighborhood dominance relation

matrix R�Pd
U ¼ rPd

i;jð Þ
h i

n�n
is defined as D�Pd

U ¼ dPd

i;jð Þ
h i

n�n
, where
dPd
i;jð Þ ¼

Pn
l¼1r

Pd
i;lð Þ þ 1; 1 6 i; j 6 n; i ¼ j;

0; 1 6 i; j 6 n; i–j:

(
ð20Þ
In addition, the determinant of diagonal matrix is expressed as jD�PdU j ¼ Pn
i¼j¼1d

Pd
ij , the inverse matrix of the diagonal

matrix is defined as D
�Pd
U

� ��1
¼ 1

d
Pd
i;jð Þ

� �
n�n

, where
1

dPd
i;jð Þ
¼

1Xn
l¼1

r
Pd
i;lð Þþ1

; 1 6 i; j 6 n; i ¼ j;

0; 1 6 i; j 6 n; i–j:

8>><
>>: ð21Þ
For any two matrices E ¼ e i;jð Þ

 �

m�n and F ¼ f i;jð Þ
h i

n�l
, the multiplication ‘‘
” operation between the two matrices is denoted

as E 
 F ¼ g i;jð Þ
h i

m�l
, where g i;jð Þ ¼

Pn
k¼1e i;kð Þ � f k;jð Þ, and ‘‘�” represents standard multiplication.
Corollary 1. For any P#C, the D�Pd
U and D�Pd[dU are two diagonal matrices with respect to P and P [ d, respectively. Then,

NDCE based on matrix calculation is denoted as
MNH�djPd Uð Þ ¼ � 1
jUj log jD

�Pd[d
U 
 D

�Pd
U

� ��1
j: ð22Þ
Proof. From Definition 2, we have NH�djPd Uð Þ ¼ � 1
jUj
Pn

i¼1 log
jNþ

d[Pd
xið Þjþ1

jNþPd xið Þjþ1 ¼ �
1
jUj log

Pn
i¼1 jNþ

d[Pd
xið Þjþ1

� �
Pn

i¼1 jNþPd xið Þjþ1
� � . According to Definitions 6

and 8, we can obtain that the diagonal matrices D
�Pd
U ¼ dPd

i;jð Þ
h i

n�n
and D

�Pd[d
U ¼ dPd[d

i;jð Þ
h i

n�n
, where dPd

i;jð Þ ¼ jNþPd xið Þj þ 1 and
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dPd[d
i;jð Þ ¼ jNþPd[d xið Þj þ 1. Then we can derive jD�Pd[dU 
 D

�Pd
U

� ��1
j ¼ Pn

i¼1
d
Pd[d
i;jð Þ

d
Pd
i;jð Þ
¼ Pn

i¼1d
Pd[d
ij

Pn
i¼1d

Pd
i;jð Þ
¼

Pn
i¼1 jNþ

d[Pd
xið Þjþ1

� �
Pn

i¼1 jNþPd xið Þjþ1
� � . Thus, we can determine

that NH�djPd Uð Þ= MNH�djPd Uð Þ. In summary, the results of calculating NDCE based on matrix and non-matrix methods are con-
sistent. h

Corollary 1 proposes a calculation method for NDCE in matrix form. Subsequently, an example is used to explain how
NDCE is calculated using the matrix method.

Example 1. The data listed at the left in Table 1 is a HODS, where
U ¼ x1; x2; x3; x4; x5; x6; x7; x8f g;Cca ¼ a1f g;Cnu ¼ a2; a3; a4f g, and d is a decision feature. The values of the different criteria
are ranked as follows. Va1 : low � mid � high � vhigh; Va2 : 1 � . . . � 20; Va3 : 0 � . . . � 2; Va4 : 100 � . . . � 500;
Vd : E � D � C � B � A.

First, we normalize the initial data by Eqs. (1) and (2), where k1 ¼ 0:8 and k2 ¼ 1:5. The normalized result is shown at the
right side of Table 1.

Then, according to Definition 6, given d ¼ 0:05, the neighborhood dominance relation matrix R�Cd
U and the dominance

relation matrix R�dU are calculated respectively as
Table 1
An exam

U

x1
x2
x3
x4
x5
x6
x7
x8
R
�Cd
U ¼

0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1
0 0 0 0 0 1 0 0
1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0

2
66666666666664

3
77777777777775

8�8

;R�dU ¼

1 1 1 1 1 1 0 1
0 1 0 1 0 0 0 0
0 1 1 1 0 1 0 0
0 1 0 1 0 0 0 0
1 1 1 1 1 1 0 1
0 1 1 1 0 1 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1

2
66666666666664

3
77777777777775

8�8

:

Taking R
�Cd
U as an example, Property 3 is verified as follows.

(1) In the R
�Cd
U ¼ rCd

i;jð Þ

h i
8�8

; jUj ¼ 8;

(2) For any i 2 1;8½ � and i 2 Nþ; rCd
i;ið Þ ¼ 0;

(3) For any i; j 2 1;8½ � and i; j 2 Nþ,
P8

j¼1r
Cd
i;jð Þ ¼ jNþCd

xið Þj and
P8

i¼1r
Cd
i;jð Þ ¼ jN�Cd

xj
� �j, e.g., when i ¼ 3;NþCd

x3ð Þ ¼ x1; x2; x4; x6; x8f g,
we have

P8
j¼1r

Cd
3;jð Þ ¼ jNþCd

x3ð Þj ¼ 5, when j ¼ 6;N�Cd
x6ð Þ ¼ x1; x2; x3; x4; x5; x7; x8f g, we have

P8
i¼1r

Cd
i;6ð Þ ¼ jN�Cd

x6ð Þj ¼ 7.

Next, according to Definition 7, the neighborhood dominance relation matrix R
�Cd[d
U is calculated as
R
�Cd[d
U ¼ R

�Cd
U ^ R�dU ¼

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0

2
66666666666664

3
77777777777775

8�8

:

ple of initial and normalized HODS.

The initial data The normalized data

a1 a2 a3 a4 d a1 a2 a3 a4 d

high 8 1.10 410 D 0.4231 0.3299 0.4785 0.4301 D
high 10 0.90 380 B 0.4231 0.4330 0.3558 0.3750 B
low 2 0.40 280 C 0.0385 0.0206 0.0491 0.1912 C
high 5 0.72 380 B 0.4231 0.1753 0.2454 0.3750 B
low 6 0.50 220 D 0.0385 0.2268 0.1104 0.0809 D
vhigh 14 1.30 480 C 0.6154 0.6392 0.6012 0.5588 C
mid 12 0.90 300 E 0.2308 0.5361 0.3558 0.2279 E
high 7 0.94 390 D 0.4231 0.2784 0.3804 0.3934 D
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Afterwards, according to Definition 8, the diagonal matrices D
�Cd
U and D

�Cd[d
U are calculated as
Table 2
A new

U

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
D
�Cd
U ¼

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 6 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 6 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2

2
66666666666664

3
77777777777775

8�8

; D
�Cd[d
U ¼

2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2

2
66666666666664

3
77777777777775

8�8

;

and the inverse matrix of D�Cd
U is calculated as
D
�Cd
U

� ��1
¼

1=2 0 0 0 0 0 0 0
0 1=2 0 0 0 0 0 0
0 0 1=6 0 0 0 0 0
0 0 0 1=2 0 0 0 0
0 0 0 0 1=6 0 0 0
0 0 0 0 0 1=1 0 0
0 0 0 0 0 0 1=2 0
0 0 0 0 0 0 0 1=2

2
66666666666664

3
77777777777775

8�8

:

Finally, according to Corollary 1, NDCE of C to d can be calculated by using matrices D
�Cd[d
U and D

�Cd
U

� ��1
as

MNH�djCd
Uð Þ ¼ � 1

8 log jD�Cd[d
U 
 D

�Cd
U

� ��1
j ¼ � 1

8 log 2� 1
2� 1� 1

2� 4� 1
6� 1� 1

2� 5� 1
6� 1� 1

1� 2� 1
2� 2� 1

2

� � ¼ � 1
8 log 5

36 ¼
0:3560.

The following, we naturally derive the matrix-based inner and outer significance measures based on MNDCE.

Corollary 2. Given a HODS H� ¼ U;C [ df g;V ; fð Þ, for any B#C and 8a 2 B, matrix calculation based inner significance of a in
B is denoted as
Msig�Uinner a;B;dð Þ ¼ MNH�dj B�að Þd Uð Þ �MNH�djBd Uð Þ: ð23Þ
Corollary 3. Given a HODS H� ¼ U; C [ df g;V ; fð Þ, for any B#C and 8a 2 C � Bð Þ, matrix calculation based outer significance of a
to B is denoted as
Msig�Uouter a;B;dð Þ ¼ MNH�djBd Uð Þ �MNH�dj B[að Þd Uð Þ: ð24Þ
3.3. Matrix-based heuristic feature selection algorithm in a HODS

A heuristic feature selection algorithm calculates a reduct from scratch when objects vary in a HODS, retraining the
dynamic HODS as a new one. Thus, this algorithm is frequently referred to as a non-incremental feature selection algorithm
HODS after adding objects.

The initial data The normalized data

a1 a2 a3 a4 d a1 a2 a3 a4 d

high 8 1.10 410 D 0.4231 0.3299 0.4785 0.4301 D
high 10 0.90 380 B 0.4231 0.4330 0.3558 0.3750 B
low 2 0.40 280 C 0.0385 0.0206 0.0491 0.1912 C
high 5 0.72 380 B 0.4231 0.1753 0.2454 0.3750 B
low 6 0.50 220 D 0.0385 0.2268 0.1104 0.0809 D
vhigh 14 1.30 480 C 0.6154 0.6392 0.6012 0.5588 C
mid 12 0.90 300 E 0.2308 0.5361 0.3558 0.2279 E
high 7 0.94 390 D 0.4231 0.2784 0.3804 0.3934 D
high 15 1.50 499 A 0.4231 0.6907 0.7239 0.5938 A
mid 4 0.88 280 B 0.2308 0.1237 0.3436 0.1921 B
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in contrast with incremental algorithms. This subsection introduces a matrix-based heuristic feature selection (MHFS) algo-
rithm based on Definition 3. The detailed steps are provided in Algorithm 1.

Algorithm 1 MHFS algorithm

Input: A H� ¼ U;C [ df g;V ; fð Þ, data normalized parameters k1, k2 and distance threshold d.
Output: A reduct RedU .
1: Initialize RedU  £;
2: Normalize HODS H� ¼ U;C [ df g;V ; fð Þ by Eqs. (1) and (2);
3: Calculate MNDCE MNH�djCd

Uð Þ in U by Corollary 1;

4: for k ¼ 1 to jCj do
5: Calculate Msig�Uinner ak;C; dð Þ by Corollary 2;

6: if Msig�Uinner ak;C; dð Þ > 0 then
7: RedU  RedU [ akf g;
8: end if
9: end for
10: Let B RedU;
11: while MNH�djBd

Uð Þ > MNH�djCd
Uð Þ do

12: for l ¼ 1 to jC � Bj
13: Calculate Msig�Uouter al;B; dð Þ by Corollary 3;
14: end for

15: Select a0 ¼ max Msig�Uouter al;B; dð Þ; al 2 C � Bð Þ
n o

;

16: B B [ a0
17: end while
18: for each a 2 B
19: if MNH�dj B�að Þd Uð Þ 6 MNH�djBd

Uð Þ then
20: B B� a;
21: end if
22: end for
23: RedU  B;
24: return RedU;

The detailed explanation of the steps in Algorithm 1 and their time complexity are given as follows. Step 2 normalizes the

HODS, and its time complexity is O jCjjUjð Þ. Step 3 calculates MNDCE from scratch, and its time complexity is O jCjjUj2
� �

. Steps

4-9 obtain the indispensable feature ak, i.e., ak is a core feature of the HODS, and its time complexity is O jCj2jUj2
� �

. Steps 11-

17 find the best candidate feature from the remaining feature set C � B to the selected feature subset B until Step 11 no

longer holds, i.e., relative reduct B is obtained, and its time complexity is O jCj2jUj2
� �

. Steps 18-22 delete redundant features

from relative reduct B, and its time complexity is O jBj2jUj2
� �

. Steps 23-24 output a final reduct. In summary, the time com-

plexity of Algorithm 1 is O jCjjUj þ jCjjUj2 þ jCj2jUj2 þ jCj2jUj2 þ jBj2jUj2
� �

.

Here, we use an example to demonstrate how the reduct of a HODS is calculated in accordance with Algorithm 1.

Example 2. Continuing from Example 1, the process of calculating the reduct of the HODS in Table 1 by using Algorithm 1 is
described as follows.

(1) We perform Step 2. The normalized HODS is shown at the right side of Table 1.
(2) We perform Step 3. MNDCE is calculated using Corollary 1 as MNH�djCd

Uð Þ ¼ 0:3560, it has been obtained in Example 1.

(3) We perform Steps 4-9. For any a 2 C;Msig�Uinner a; C; dð Þ can be calculated using Corollary 2 as Msig�Uinner a1;C; dð Þ ¼
0:0731 > 0;Msig�Uinner a2;C; dð Þ ¼ �0:0051 < 0;Msig�Uinner a3; C; dð Þ ¼ 0, and Msig�Uinner a4;C; dð Þ ¼ 0:0278 > 0. Then, the core
feature set is obtained as B ¼ a1; a4f g.

(4) We perform Steps 11-17. MNH�djBd Uð Þ is calculated using Corollary 1 as MNH�djBd Uð Þ ¼ 0:3509. Since

MNH�djCd
Uð ÞP MNH�djBd Uð Þ, then proceed to Step 18.
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(5) We perform Steps 18-22. For any a 2 B;MNH�dj B�að Þd Uð Þ can be calculated using Corollary 1 as MNH�dj B�a1ð Þd Uð Þ ¼ 0:4934

and MNH�dj B�a4ð Þd Uð Þ ¼ 0:3787. Notably, for any a 2 B, we have MNH�dj B�að Þd Uð Þ > MNH�djBd Uð Þ. Thus, we can conclude that
no redundant features occur in B.

(6) We perform Steps 23-24. The final reduct RedU ¼ a1; a4f g is the output.

4. Updating mechanism of MNDCE with a variation of multiple objects

In the filter feature selection algorithm, the calculation of the uncertainty measure plays a key role that directly affects the
efficiency of the algorithm. When multiple objects vary in a HODS, recomputing MNDCE is time-consuming, particularly in
large data. To solve this issue, we propose the updating principles of the diagonal matrix when objects are added to or
deleted from a HODS. On the basis of these principles, we introduce two updating mechanisms for calculating the new
MNDCE in this section.

4.1. Updating mechanism of MNDCE while adding multiple objects

In this subsection, we discuss the incremental updating mechanism for calculating a new MNDCE when multiple objects
are added to a HODS. The key step in the incremental calculation process is to update the diagonal matrix. In this, we intro-
duce the updating principles of the diagonal matrix.

Proposition 3. Given a HODS H� ¼ U;C [ df g;V ; fð Þ, where U ¼ x1; x2; . . . ; xnf g and P#C. Suppose that the object set
Uad ¼ xnþ1; xnþ2; . . . ; xnþn0f g is added to H�, and the new object set is denoted as U0 ¼ U [ Uad. The known previous neighborhood

dominance relation matrix and its diagonal matrix on U with respect to P are R�PdU ¼ rPd

i;jð Þ
h i

n�n
and D�PdU ¼ dPd

i;jð Þ
h i

n�n
, respectively.

The updated diagonal matrix on U0 with respect to P is denoted as D�Pd

U0 ¼ d0Pd

i;jð Þ
h i

nþn0ð Þ� nþn0ð Þ
, where
d0Pdi;jð Þ ¼
dPd

i;jð Þ þ
Xnþn0
l¼nþ1

r0Pdi;lð Þ; 1 6 i; j 6 n; i ¼ j;

Pnþn0
l¼1 r0Pdi;lð Þ þ 1; nþ 1 6 i; j 6 nþ n0; i ¼ j;

0; 1 6 i; j 6 nþ n0; i–j;

8>>>>><
>>>>>:

ð25Þ
where
r0Pdi;jð Þ ¼
rPdi;jð Þ; 1 6 i 6 nð Þ ^ 1 6 j 6 nð Þ;
1; xjN

�
Pd
xi; nþ 1 6 i 6 nþ n0ð Þ _ nþ 1 6 j 6 nþ n0ð Þ;

0; otherwise:

8><
>: ð26Þ
Proof. The proof process is divided into two parts. First, we prove Eq. (26). When Uad is added to U, the new object set is
U0 ¼ x1; x2; . . . ; xn; xnþ1; xnþ2; . . . ; xnþn0f g. From Definition 6, the new neighborhood dominance relation matrix R

�Pd
U0 can be

divided into four parts, i.e., . We discuss the four sub-matrices as follows.

(1) The r1Pdi;jð Þ

h i
n�n

represents the neighborhood dominance relation matrix of U � U under P, where
r1Pdi;jð Þ ¼
1; xjN

�
Pd
xi; n 6 i 6 nð Þ _ n 6 j 6 nð Þ;

0; otherwise:

(

Notably, the r1Pdi;jð Þ

h i
n�n

is previous neighborhood dominance relation matrix R
�Pd
U ¼ rPdi;jð Þ

h i
n�n

.h i

(2) The r2Pdi;jð Þ n�n0

represents the neighborhood dominance relation matrix of U � Uad under P, where
r2Pdi;jð Þ ¼
1; xjN

�
Pd
xi; 1 6 i 6 nð Þ ^ nþ 1 6 j 6 nþ n0ð Þ;

0; otherwise:

(

(3) The r3Pdi;jð Þ

h i
n0�n

represents the neighborhood dominance relation matrix of Uad � U under P, where
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r3Pdi;jð Þ ¼
1; xjN

�
Pd
xi; nþ 1 6 i 6 nþ n0ð Þ ^ 1 6 j 6 nð Þ;

0; otherwise:

(

(4) The r4Pdi;jð Þ

h i
n0�n0

represents the neighborhood dominance relation matrix of Uad � Uad under P, where
r4Pdi;jð Þ ¼
1; xjN

�
Pd
xi; nþ 1 6 i 6 nþ n0ð Þ ^ nþ 1 6 j 6 nþ n0ð Þ;

0; otherwise:

(

Based on the above discussion, we find that r2Pdi;jð Þ

h i
n�n0

; r3Pdi;jð Þ

h i
n0�n

, and r4Pdi;jð Þ

h i
n0�n0

can be represented by
r0Pdi;jð Þ ¼
1; xjN

�
Pd
xi; nþ 1 6 i 6 nþ n0ð Þ _ nþ 1 6 j 6 nþ n0ð Þ;

0; otherwise:

(

By integrating the previous and added neighborhood dominance relation matrices, we can derive the updated neighborhood

dominance relation matrix R
�Pd
U0 ¼ r0Pdi;jð Þ

h i
nþn0ð Þ� nþn0ð Þ

, where r0Pdi;jð Þ is denoted as Eq. (26). Second, we prove Eq. (25). From Defini-

tion 8, we have D
�Pd
U0 ¼ d0Pdi;jð Þ

h i
nþn0ð Þ� nþn0ð Þ

. In fact, all elements outside the diagonal in the diagonal matrix are zero, i.e., for any

1 6 i; j 6 nþ n0; i–j; d0Pdi;jð Þ ¼ 0 holds. Thus, we can determine that d0Pdi;jð Þ remain unchanged for any 1 6 i; j 6 n; i–j, i.e., d0Pdi;jð Þ ¼ dPd
i;jð Þ.

According to Eq. (20), for any 1 6 i; j 6 n; i ¼ j, we can get that d0Pdi;jð Þ ¼
Pnþn0

l¼1 r0Pdi;lð Þ þ 1 ¼Pn
l¼1r

0Pd
i;lð Þ þ

Pnþn0
l¼nþ1r

0Pd
i;lð Þ þ 1. Based on Eq.

(26), for any 1 6 i; l 6 n; r0Pdi;lð Þ ¼ rPdi;lð Þ always hold. Hence, we can determine that

d0Pdi;jð Þ ¼
Pn

l¼1r
Pd
i;lð Þ þ 1þPnþn0

l¼nþ1r
0Pd
i;lð Þ ¼ dPd

i;jð Þ þ
Pnþn0

l¼nþ1r
0Pd
i;lð Þ. Besides, for any nþ 1 6 i; j 6 nþ n0; i ¼ j, from Definition 8, d0Pdi;jð Þ is calcu-

lated asd0Pdi;jð Þ ¼
Pnþn0

l¼1 r0Pdi;lð Þ þ 1. Thus, we can obtain the updated diagonal matrix D
�Pd
U0 ¼ d0Pdi;jð Þ

h i
nþn0ð Þ� nþn0ð Þ

, where d0Pdi;jð Þ is denoted

as Eq. (25). h

Proposition 3 discusses the incremental updating mechanism of the proposed diagonal matrix when multiple objects are

added to a HODS. Notably, the principle of updating the diagonal matrix D
�Pd[d
U0 on U0 with respect to Pd [ d is similar to the

that of Proposition 3.
Here we explain how to calculate a new MNDCE by updating the diagonal matrix when adding objects. Given a HODS

H� ¼ U;C [ df g;V ; fð Þ, for any P#C, the known original matrices are R
�Pd
U ;R�Pd[dU ;D�PdU , and D

�Pd[d
U . When Uad is added to

H�, in accordance with Proposition 3, we can obtain the updated diagonal matrices D
�Pd
U0 and D

�Pd[d
U0 . On the basis of this

matrices, calculating the new MNH�djPd U0
� �

by using Corollary 1 is easy. In summary, after obtaining the updated diagonal

matrices, we can easily derive the new MNH�djPd U0
� �

via a simple matrix operation.
Subsequently, in accordance with Proposition 3, we will present an example to demonstrate how to update the neighbor-

hood dominance relation matrix and its diagonal matrix. Then, the new MNDCE is calculated on the basis of these matrices
by using Corollary 1.

Example 3. Continuing from Example 1, Uad ¼ x9; x10f g is added to Table 1, a new object set is U0 ¼ x1; x2; . . . ; x10f g. First, we
just normalize the added data by using Eqs. (1) and (2). The results are shown in Table 2. First, according to Eq. (26), the

neighborhood dominance relation matrix R�Cd

U0 based on R�Cd
U is updated as

, where rCd

i;jð Þ
h i

8�8
¼

0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1
0 0 0 0 0 1 0 0
1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0

2
66666666664

3
77777777775
8�8

,

r2Cd

i;jð Þ
h i

8�2
¼

0 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0

2
66666666664

3
77777777775
8�2

, r3Cd

i;jð Þ
h i

2�8
¼ 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0

� �
2�8

, r4Cd

i;jð Þ
h i

2�2
¼ 0 0

1 0

� �
2�2

.

Analogously, we can obtain the updated matrix R�Cd[d
U0 based on R�Cd[d

U by using Eq. (26) as
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R
�Cd[d
U0 ¼

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0

2
6666666666666666664

3
7777777777777777775

10�10

:

Next, based on the updated neighborhood dominance relation matrices R�Cd

U0 ;R�Cd[d
U0 , and their previous diagonal matrices

D
�Cd
U ;D�Cd[d

U , we update the diagonal matrices D
�Cd

U0 and D
�Cd[d
U0 respectively by using Eq. (25) as D

�Cd

U0 =

.

Final, we calculate new MNDCE by using Corollary 1 as
MNH�djCd

U0
� � ¼ � 1

10 log 2� 1
2� 1� 1

2� 5� 1
7� 1� 1

2� 6� 1
7� 1� 1

1� 3� 1
3� 2� 1

2� 1� 1
1� 2� 1

4

� � ¼ � 1
10 log

15
196 ¼ 0:3708.

4.2. Updating mechanism of MNDCE while deleting multiple objects

This subsection presents an incremental method for computing a new MNDCE while deleting multiple objects from a
HODS. Wemostly discuss the updating mechanism of the diagonal matrix. The process of calculating a newMNDCE is similar
to that presented in subSection 4.1, but the method for updating the diagonal matrix is different. The primary reason is that
new content is not required to be calculated while deleting multiple objects from the original HODS. We must only move the
position of the matrix elements in accordance with the position of the deleted objects and then obtain the updated matrices.
The following paragraphs introduce the updating principles of the diagonal matrix.

Proposition 4. Given a HODS H� ¼ U;C [ d;V ; fð Þ, where U ¼ x1; x2; . . . ; xnf g and P#C. Ude ¼ xq1 ; xq2 ; . . . ; xqn0
� �

is deleted from

H�. The new object set is denoted as U0 ¼ U � Ude. The neighborhood dominance relation matrix and its diagonal matrix on U with

respect to P are R�Pd
U ¼ rPdi;jð Þ

h i
n�n

and D�PdU ¼ dPd

i;jð Þ
h i

n�n
, respectively. The updated diagonal matrix on U0 with respect to P is

denoted as D�Pd

U0 ¼ d0Pd

i;jð Þ
h i

n�n0ð Þ� n�n0ð Þ
, where
d0Pdi;jð Þ ¼

dPd
iþk�1;jþk�1ð Þ �

Xn0
t¼1

rPdiþk�1;qtð Þ; qk�1 � kþ 2 6 i; j < qk � kþ 1; i ¼ j;

dPd
iþn0 ;jþn0ð Þ �

Xn0
t¼1

rPdiþn0 ;qtð Þ; qn0 � n0 þ 1 6 i; j 6 n� n0; i ¼ j;

0; 1 6 i; j 6 n� n0; i–j;

8>>>>>>><
>>>>>>>:

ð27Þ
where 1 6 k 6 n0.
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Proof. After deleting object set Ude, the new object set is denoted as U0 ¼ x1; x2; . . . ; xn�n0f g. From Eq. (20), we have

d0Pdi;jð Þ ¼
Pn�n0

l¼1 r0Pdi;lð Þ+1 =
Pn

l¼1r
0Pd
i;lð Þ �

Pn0
t¼1r

0Pd
i;tð Þ þ 1 for any 1 6 i; j 6 n� n0; i ¼ j. Subsequently, on the basis of the previous diagonal

matrix D
�Pd
U , we discuss the three cases of changes of the elements in D

�Pd
U0 on U0.

(1) For any 1 6 i; j 6 n� n0; i–j; d0Pdi;jð Þ ¼ 0 is always true, that is, d0Pdi;jð Þ ¼ dPd
i;jð Þ ¼ 0 holds.

(2) Notably, if 1 6 i; j 6 n, then r0Pdi;jð Þ ¼ rPdi;jð Þ holds. Thus, we have d0Pdi;jð Þ ¼
Pn

l¼1r
Pd
i;lð Þ �

Pn0
t¼1r

Pd
i;tð Þ þ 1= dPd

i;jð Þ �
Pn0

t¼1r
Pd
i;tð Þ. From Def-

inition 8, for any qk�1 6 i; j < qk; i ¼ j, the row and column coordinates of element dPd
i;jð Þ should be shifted forward simul-

taneously by k� 1 positions. Thus, we can determine that d0Pdi;jð Þ ¼ dPd
iþk�1;jþk�1ð Þ �

Pn0
t¼1r

Pd
iþk�1;qtð Þ for any

qk�1 � kþ 2 6 i; j < qk � kþ 1; i ¼ j.

(3) For any qn0 � n0 þ 1 6 i; j 6 n� n0; i ¼ j, the row and column coordinates of element dPd
i;jð Þ should be shifted forward

simultaneously by n0 positions. Thus, we can determine that d0Pdi;jð Þ ¼ dPd
iþn0 ;jþn0ð Þ �

Pn0
t¼1r

Pd
iþn0 ;qtð Þ for any

qn0 � n0 þ 1 6 i; j 6 n� n0; i ¼ j.

In summary, we can obtain the updated diagonal matrix D
�Pd
U0 , where d0Pdi;jð Þ is denoted as Eq. (27). h

Proposition 4 discusses the incremental updating mechanism of the proposed diagonal matrix when multiple objects are

deleted from a HODS. Similarly, we can update the diagonal matrix D
�Pd[d
U0 on U0 with respect to Pd [ d in accordance with

Proposition 4.
Here, an example is presented in accordance with Proposition 4 to demonstrate how the diagonal matrix can be updated

when multiple objects are deleted from a HODS. Thereafter, we calculate the new MNDCE by using Corollary 1.

Example 4. Continuing from Example 1, Ude ¼ x2; x7f g is deleted from Table 1. Then, we obtain the new object set is
U0 ¼ x1; x3; x4; x5; x6; x8f g in Table 3. On the basis of previous neighborhood dominance relation matrix R�Cd

U and its diagonal

matrix D�Cd
U , the diagonal matrix D�Cd

U0 is updated by using Proposition 4

as Similarly, based on R�Cd
U and D�Cd

U , we can obtain

the updated diagonal matrix D�Cd[d
U0 by using Proposition 4

as Final, we calculate new MNDCE by using Corollary

1 as MNH�djCd
U0
� � ¼ � 1

6 log 2� 1
2� 3� 1

5� 1� 1
2� 4� 1

4� 1� 1
1� 2� 1

2

� � ¼ � 1
6 log

3
10 ¼ 0:2895.
Table 3
A new HODS after deleting object set.
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5. Matrix-based incremental algorithms for feature selection

From the analysis in the previous section, we determine that the original MNDCE will change when multiple objects are
added to or deleted from a HODS. This condition directly causes a change in the significance of features, which may make the
previous reduct invalid for the new HODS. Thus, we must recalculate a valid reduct when the objects vary in a HODS. In this
section, we propose two matrix-based incremental feature selection algorithms based on the updated principle of MNDCE
proposed in the previous section. To further improve the computational efficiency, we also construct a sequence of all can-
didate features in two incremental feature selection algorithms to accelerate the selection of feature subsets by referring to
the principles of Corollary 3.

5.1. Matrix-based incremental feature selection algorithm while adding multiple objects

In this subsection, we first develop a matrix-based incremental feature selection algorithm while adding multiple objects
(MIFSA). Then, we analyze the time complexity of the proposed algorithm. Lastly, an example is presented to demonstrate
the computational process of MIFSA algorithm.

Algorithm 2 MIFSA algorithm

Input:
(1) An original normalized H� ¼ U;C [ df g;V ; fð Þ, where U ¼ x1; x2; . . . ; xnf g, data normalized parameters k1, k2 and
distance threshold d;
(2) The Uad ¼ xnþ1; xnþ2; . . . ; xnþn0f g is an added object set;
(3) The original reduct RedU on U;

(4) The original neighborhood dominance relation matrices R�Cd
U , R�ReddU , R�Cd[d

U , and R�Redd[dU , and their diagonal

matrices D�Cd
U , D�ReddU , D�Cd[d

U , and D�Redd[dU .
Output: A new reduct RedU0 on U [ Uad:

1: Normalize the added object set Uad by Eqs. (1) and (2), and integrate it into H�;

2: Initialize B RedU , U
0  U [ Uad, D

�Cd

U0  D�Cd
U , D�Cd[d

U0  D�Cd[d
U , D�Bd

U0  D�Bd
U , and D�Bd[d

U0  D�Bd[dU ;

3: Update the diagonal matrices D�Cd

U0  d i;jð Þ0Cd

 �

nþn0ð Þ� nþn0ð Þ, D
�Cd[d
U0  d i;jð Þ0Cd[d
 �

nþn0ð Þ� nþn0ð Þ, D
�Bd
U0  d i;jð Þ0Bd


 �
nþn0ð Þ� nþn0ð Þ,

and D�Bd[dU0  d i;jð Þ0Bd[d

 �

nþn0ð Þ� nþn0ð Þ by Proposition 3;

4: Compute new MNDCEs MNH�djCd
U0
� �

and MNH�djBd U0
� �

by Corollary 1;

5: if MNH�djBd U0
� �

6 MNH�djCd
U0
� �

then

6: go to step 16;
7: else
8: go to step 10;
9: end if

10: For any a 2 C � Bð Þ, compute Msig�U
0

outer a;B; dð Þ by Corollary 3, then construct a descending sequence by

Msig�U
0

outer a;B; dð Þ, and record the results by a01; a
0
2; . . . ; a

0
jC�Bj

n o
;

11: while MDH�djB U0
� �

> MDH�djC U0
� �

do

12: for h ¼ 1 to jC � Bj do
13 : select B B [ a0h and compute MNH�djBd

U0
� �

;

14: end for
15: end while
16: for each a 2 B do
17: compute MNH�dj B�að Þd U0

� �
;

18: if MNH�dj B�að Þd U0
� �

6 MNH�djBd
U0
� �

then

19: B B� a;
20: end if
21: end for
22: RedU0  B;
23: return RedU0 ;

The detailed explanation of the steps of Algorithm 2 and their time complexity are presented as follows. Step 1 normalizes
the added object set, and its time complexity is O jCjjUadjð Þ. Step 3 updates the diagonal matrices in an incremental manner via
Proposition3, and its timecomplexity isO jCjjUadjjU0j

� �
. Step4 computesnewMNDCEsbyusingCorollary1. Steps5-9determine
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whether the new MNDCE under the original selected feature subset (i.e., original reduct) is not higher than that of under the
entire feature set; if yes, then theoriginal selected feature subset is kept unchanged. Steps 10-15arrange the remaining features
in descending order, and incrementally update the selected feature subset until Step 11 no longer holds, its time complexity is

O jCj � jBjð ÞjU0j2
� �

. Steps 16-21 delete redundant features from the selected feature subset, and its time complexity is

O jBj2jU0j2
� �

. Steps 22-23 output a final reduct. In summary, the time complexity of Algorithm 2 is

O jCjjUadj þ jCjjUadjjU0j þ jCj � jBjð ÞjU0j2 þ jBj2jU0j2
� �

. The comparison of the time complexities of algorithms MHFS and MIFSA

is provided in Table 4.
Notably, the time complexity of algorithmMIFSA is typically much less than that of algorithmMHFS, as shown in Table 4.

The primary reason for this condition is that algorithm MHFS calculates a new reduct without prior information when mul-
tiple objects are added to the original HODS. By contrast, algorithm MIFSA uses previous knowledge to quickly calculate the
new MNDCE by applying the updating principles. Then, it calculates a new reduct on the basis of the greedy search strategy.
In real-life applications, the number of samples in a HODS is considerably higher than the number of features, i.e., jUj � jCj.
Therefore, algorithm MIFSA exhibits a more significant time-saving effect on calculating reduct for large-scale data than
algorithm MHFS.

Subsequently, we present an example to demonstrate the detailed steps for calculating a new reduct by using Algorithm 2
when multiple objects are added to a HODS.

Example 5. Continuing from Example 2, the known knowledge of the original HODS includes the reduct RedU ¼ a1; a4f g; the
neighborhood dominance relation matrices R�Cd

U , R�ReddU , R�Cd[d
U , and R�Redd[dU ; and their diagonal matrices D�Cd

U , D�ReddU ,

D�Cd[d
U , and D�Redd[dU .

(1) We perform Step 1. The added object set Uad ¼ x9; x10f g is normalized and integrated into the original normalized
HODS. The results are provided at the right side of Table 2.

(2) We perform Steps 2-3. Let B RedU ;U
0  U [ Uad. Then, the diagonal matrices are updated via Proposition 3 as

D
�Cd

U0 ;D�Cd[d
U0 , D�BdU0 , and D

�Bd[d
U0 .

(3) We perform Step 4. The two new MNDCEs can be calculated using Corollary 1 as MNH�djCd
U0
� � ¼ 0:3708 and

MNH�djBd U0
� � ¼ 0:3463.

(4) We perform Steps 5-9. Given that MNH�djCd
U0
� �

> MNH�djBd U0
� �

, proceed to Step 16.
Table 4
The comparison of the time complexity of algorithms MHFS and MIFSA.

Algorithm MHFS MIFSA

Time complexity O jCjjU0 j þ jCjjU0 j2 þ jCj2jU0 j2 þ jCj2jU0 j2 þ jBj2jU0 j2
� �

O jCjjUadj þ jCjjUadjjU0 j þ jCj � jBjð ÞjU0 j2 þ jBj2jU0 j2
� �

Table 5
The comparison of the time complexity of algorithms MHFS and MIFSD.

Algorithm MHFS MIFSD

Time complexity O jCjjU0 j þ jCjjU0 j2 þ jCj2jU0 j2 þ jCj2jU0 j2 þ jBj2jU0 j2
� �

O jUdejjUj þ jCj � jBjð ÞjU0 j2 þ jBj2jU0 j2
� �

Table 6
The description of data sets.

No. Data sets Abbreviation Samples Features Classes

Numerical Categorical Total

1 Iris Iris 150 4 0 4 3
2 Wine Wine 178 13 0 13 3
3 Leaf Leaf 340 15 0 15 30
4 Libras Movement Libras 360 90 0 90 15
5 Robot Execution Failures Robot 463 90 0 90 16
6 Mice Protein Expression Mice 1077 68 0 68 8
7 Car Car 1728 0 6 6 4
8 Postoperative Post 87 1 7 8 3
9 Hepatitis Hepa 155 6 13 19 2
10 Australian Aust 690 6 8 14 2
11 Artificial Data 1 AD1 5473 7 3 10 5
12 Artificial Data 2 AD2 6436 7 3 10 5
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(5) We perform Steps 16-21. For any a 2 B;MNH�dj B�a1ð Þd U0
� � ¼ 0:3445 and MNH�dj B�a4ð Þd U0

� � ¼ 0:4562 are calculated. Given

that MNH�dj B�a1ð Þd U0
� �

< MDH�djB U0
� �

; a1 is a redundant feature, and thus, the final selected feature subset is B ¼ a4f g.
(6) We perform Steps 22-23. The final reduct RedU0 ¼ a4f g is the output.

5.2. Matrix-based incremental feature selection algorithm while deleting multiple objects

This subsection first introduces a matrix-based incremental feature selection algorithm while deleting multiple objects
(MIFSD). Then, the time complexity of the proposed algorithm is analyzed. Lastly, we demonstrate the process of the pro-
posed algorithm by providing an example.

Algorithm 3 MIFSD algorithm

Input:
(1) An original normalized H� ¼ U;C [ df g;V ; fð Þ, where U ¼ x1; x2; . . . ; xnf g;Ude ¼ xq1 ; xq2 ; . . . ; xqn0

� �
is a deleted object

set, distance threshold d;
(2) The original reduct RedU on U;

(3) The original neighborhood dominance relation matrices R�Cd
U , R�ReddU , R�Cd[d

U , and R�Redd[dU , and their diagonal

matrices D�Cd
U , D�ReddU , D�Cd[d

U , and D�Redd[dU .
Output: A new reduct RedU0 on U � Ude.
1: Delete the object set Ude from the original normalized HODS;

2: Initialize B RedU ;U
0  U � Ude;D

�Cd

U0  D�Cd
U , D�Cd[d

U0  D�Cd[d
U ;D�Bd

U0  D�Bd
U , and D�Bd[d

U0  D�Bd[dU ;

3: Update the diagonal matrices D�Cd

U0  d i;jð Þ0Cd

 �

n�n0ð Þ� n�n0ð Þ;D
�Cd[d
U0  d i;jð Þ0Cd[d
 �

n�n0ð Þ� n�n0ð Þ, D
�Bd

U0  d i;jð Þ0Bd

 �

n�n0ð Þ� n�n0ð Þ,

and D�Bd[dU0  d i;jð Þ0Bd[d

 �

n�n0ð Þ� n�n0ð Þ by Proposition 4;

4: Compute new MNDCEs MNH�djCd
U0
� �

and MNH�djBd U0
� �

by Corollary 1;

5: if MNH�djBd U0
� �

6 MNH�djCd
U0
� �

then

6: go to step 16;
7: else
8: go to step 10;
9: end if

10: For any a 2 C � Bð Þ, compute Msig�U
0

outer a;B; dð Þ by Corollary 3, then construct a descending sequence by

Msig�U
0

outer a;B; dð Þ, and record the results by a01; a
0
2; . . . ; a

0
jC�Bj

n o
;

11: while MNH�djBd
U0
� �

> MNH�djCd
U0
� �

do

12: for h ¼ 1 to jC � Bj do
13: select B B [ a0h and compute MNH�djBd

U0
� �

;

14: end for
15: endwhile
16: for each a 2 B do
17: compute MNH�dj B�að Þd U0

� �
;

18: if MNH�dj B�að Þd U0
� �

6 MNH�djBd
U0
� �

then

19: B B� a;
20: end if
21: end for
22: RedU0  B;
23: return RedU0 ;

The detailed explanation of the steps of Algorithm 3 and its time complexity are provided as follows. Step 3 updates the

diagonal matrices in an incremental manner via Proposition 4, and its time complexity is O jUdejjUjð Þ. Step 4 computes new
MNDCEs by using Corollary 1. Steps 5-9 determine whether the new MNDCE under the original selected feature subset (i.e.,
the original reduct) is not higher than that of under the entire feature set; if yes, then the original selected feature subset is
kept unchanged. Steps 10-15 arrange the remaining features in descending order and incrementally update the selected fea-

ture subset until Step 10 no longer holds; its time complexity is O jCj � jBjð ÞjU0j2
� �

. Steps 16-21 delete redundant features

from the selected feature subset, and its time complexity is O jBj2jU0j2
� �

. Steps 22-23 output a final reduct. In summary,

the time complexity of Algorithm 3 is O jUdejjUj þ jCj � jBjð ÞjU0j2 þ jBj2jU0 j2
� �

. The comparison of the time complexities of

algorithms MHFS and MIFSD is presented in Table 5.
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Table 5 clearly shows that the time complexity of algorithm MIFSD is considerably lower than that of algorithm MHFS.
The primary reason for this condition is that algorithm MIFSD uses the previous knowledge when calculating a new reduct.
By contrast, algorithm MHFS calculates a new reduct without previous knowledge. Therefore, the use of algorithm MHFS is
highly time-consuming for computing a new reduct.

Subsequently, an example is presented to demonstrate the process of calculating a new reduct by using Algorithm 3 when
multiple objects are deleted from a HODS.

Example 6. Continuing from Example 2, the known knowledge of the original HODS includes reduct RedU ¼ a1; a4f g;
neighborhood dominance relation matrices R�Cd

U , R�ReddU , R�Cd[d
U , and R�Redd[dU ; and their diagonal matrices D�Cd

U , D�ReddU ,

D�Cd[d
U , and D�Redd[dU .

(1) We perform Step 1. The object set Ude ¼ x2; x7f g is deleted from Table 1. The results are provided in Table 3.
(2) We perform Steps 2-3. Let B RedU ;U

0  U � Ude. Then, the diagonal matrices are updated via Proposition 4 as

D
�Cd

U0 ;D�Cd[d
U0 , D�BdU0 , and D

�Bd[d
U0 .

(3) We perform Step 4. The two new MNDCEs can be calculated using Corollary 1 as MNH�djCd
U0
� � ¼ 0:2895 and

MNH�djBd U0
� � ¼ 0:2895.

(4) We perform Steps 5-9. Given that MNH�djCd
U0
� � ¼ MNH�djBd U0

� �
, then proceed to Step 16.

(5) We perform Steps 16-21. For any a 2 B;MNH�dj B�a1ð Þd U0
� � ¼ 0:3870 and MNH�dj B�a4ð Þd U0

� � ¼ 0:2895 are calculated. Given

that MNH�dj B�a4ð Þd U0
� � ¼ MDH�djB U0

� �
; a4 is a redundant feature, and thus, the final selected feature subset is B ¼ a1f g.

(6) We perform Steps 22-23. The final reduct RedU0 ¼ a1f g is the output.

6. Experimental results and analysis

In this section, we demonstrate the effectiveness and efficiency of the proposed incremental algorithms by performing a
series of experiments. We downloaded ten data sets from UC Irvine machine learning repository, including six numerical
data sets, one categorical data set, and three heterogeneous data sets. To evaluate the proposed incremental algorithms
on larger data sets, two heterogeneous artificial data sets AD1 and AD2 are also provided. The summary of the twelve
selected data sets is provided in Table 6. To ensure repeatability of the experiment, relevant data sets can be downloaded
from the GitHub homepage 1. In this work, all algorithms are coded in Java language and run on a computer with 3.20 GHz
CPU Intel(R) Core(TM) i7-8700, 16.0 GB memory, and 64-bit Windows 10 operation system.

Some of the raw data sets in Table 6 cannot be used directly in the experiments. Hence, we preprocess these data sets, and
the detailed steps are described as follows. First, for data sets with few missing values, such as Mice Protein Expression and
Postoperative, we deleted the objects with missing values. However, the data set Hepatitis contains a large number of miss-
ing values, and thus, we replace these value with the average of their value domain. Second, we replace symbols with inte-
gers for the value domain of categorical features. For example, in the data set Australian, the domain of the categorical
feature A1 contains the symbols p; g, and gg, their relation is defined as p < g < gg. We naturally define the substitution rules
for these symbols as p ¼ 1; g ¼ 2, and gg ¼ 3. Evidently, 1 < 2 < 3 conforms to the ranking rules for raw data. In this manner,
the information contained in the raw data sets is not changed or lost.

6.1. Performance evaluations of algorithm MIFSA when adding multiple objects

In this subsection, we evaluate the performance of algorithm MIFSA in terms of effectiveness and efficiency. In terms of
effectiveness, we compare algorithms MIFSA and MHFS from two aspects: reduct size and its classification accuracy. In terms
of efficiency, we compare algorithms MIFSA and MHFS from two aspects: computational time and speed-up ratio. The speci-
fic experimental design is described as follows.

6.1.1. Effectiveness evaluations
This subsection compares the effectiveness of algorithms MIFSA and MHFS. We randomly select 50% of the objects from

each data set in Table 6 as the original object set. The remaining 50% of the objects are regarded as the added objects. The two
types of experiments described below are conducted.

(1) Comparison of the algorithms MIFSA and MHFS in terms of reduct size
For each data set in Table 6, algorithms MIFSA and MHFS are used to calculate a new reduct when the remaining 50%
of the objects are added to the original 50% object set. The experimental results are presented in Table 7, which lists
the number of features in the reduct (NFR), reduct, feature reduction rate (FRR) (FRR ¼ jCj � NFRð Þ=jCj;C is the raw fea-
ture set), computational time, and time reduction rate (TRR) (TRR ¼ TMHFS � TMIFSAð Þ=TMHFS; T	 is the running time of
1 https://github.com/binbinsang/Experimental-data-sets.git



Table 7
The comparison of reducts of algorithms MIFSA and MHFS.

Data
sets

MHFS MIFSA TRR
(%)

NFR Reduct FRR
(%)

Times
(ms)

NFR Reduct FRR
(%)

Times
(ms)

Iris 2 3,4 50.0 307 2 3,4 50.0 26 91.5
Wine 9 2,4,5,6,8,9,10,11,12 30.8 449 8 2,4,5,8,9,10,11,12 38.5 99 78.0
Leaf 5 2,5,6,9,12 66.7 977 5 2,5,6,9,10 66.7 154 84.2
Libras 12 2,7,27,33,53,54,60,70,77,80,85,90 86.7 14792 12 1,6,19,30,33,50,57,64,75,80,89,90 86.7 1805 87.8
Robot 5 1,39,40,42,85 94.4 14285 6 1,2,16,31,45,72 93.3 1294 90.9
Mice 14 1,6,29,30,34,40,41,44,46,48,49,55,57,68 79.4 69068 14 29,30,34,40,41,44,45,46,48,49,54,57,65,68 79.4 11396 83.5
Car 5 1,2,4,5,6 16.7 2442 5 1,2,4,5,6 16.7 1612 34.0
Post 2 6,7 75.0 322 3 2,3,6 62.5 16 95.0
Hepa 3 1,5,8 84.2 452 3 1,5,8 84.2 62 86.3
Aust 2 8,14 85.7 1762 2 8,14 85.7 380 78.4
AD1 5 1,4,5,7,10 50.0 29523 4 1,4,5,7 60.0 15425 47.8
AD2 5 1,4,5,7,10 50.0 49501 4 1,4,5,7 60.0 18041 63.6
Average 5.75 — 64.1 15323 5.67 — 65.3 4193 76.8
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algorithm 	).
Table 7 shows that the NFR and reduct generated by the algorithms MIFSA and MHFS are extremely close. In partic-
ular, NFR and reduct are identical in data sets Iris, Car, Hepa, and Aust. Moreover, the FRR of the two algorithms is
extremely close, with both reaching more than 60%. However, the running time of algorithm MIFSA is considerably
shorter than that of algorithmMHFS. The TRR of most data sets is above 50%, particularly those of data sets Iris, Robot,
and Post (i.e., all above 90%). The average TRR reaches 76.8%, indicating that algorithm MIFSA remarkably reduces the
time cost of reduct computing.

(2) Comparison of algorithms MIFSA and MHFS in terms of classification accuracy
We then compare the classification performance of the reduct generated using MIFSA, the reducts generated using
MHFS, and the raw feature set. On the basis of 10-fold cross-validation, we use the classifiers ordinal class classifier
(OCC), J48, and random tree (RT) to test the classification accuracy of the raw feature set and the selected reducts
in Table 7. The algorithms of the these three classifiers are implemented in Weka [10]. The OCC is a meta-classifier
that enables the application of conventional classification techniques to ordinal class problems [9]. The J48 classifier
is an implementation of the C4.5 decision tree algorithm. It classifies a new instance via a decision tree, which is gen-
erated by evaluating the information gain ratio of attributes [21]. Multiple decision trees are built in RT, and these
trees are used in the classification task. Attributes are selected randomly when building each decision tree, and attri-
butes with maximum information gain are selected as the split node to construct a decision tree. For the three afore-
mentioned classifiers, we use the ratio of correct classification of instances to evaluate classification performance. The
experimental results are recorded in Table 8.

As indicated in Table 8, the classification accuracy of the reducts generated using algorithms MHFS and MIFSA in most
data sets is extremely close to or slightly higher than that of the raw feature set. This finding proves that the proposed feature
selection strategy based on neighborhood dominance relation can accurately delete redundant features in a HODS and main-
Table 8
The comparison of algorithms MIFSA and MHFS on classification accuracy (%).

Data sets OCC J48 TR

Raw MHFS MIFSA Raw MHFS MIFSA Raw MHFS MIFSA

Iris 94.00 95.33 95.33 96.00 96.00 96.00 92.00 93.33 93.33
Wine 89.89 89.89 90.45 94.38 94.38 94.38 91.01 91.57 91.57
Leaf 37.94 40.00 41.18 59.70 60.59 60.29 59.12 59.71 61.47
Libras 51.94 48.06 54.16 70.28 65.27 70.83 66.11 61.39 68.88
Robot 44.71 44.06 38.23 47.52 42.11 44.50 31.32 31.75 31.75
Mice 77.62 76.04 76.13 84.68 84.68 85.52 81.15 83.57 85.42
Car 92.19 92.19 92.19 92.36 93.22 93.22 83.97 94.21 94.21
Post 67.82 68.97 68.97 66.67 68.97 68.97 59.77 73.56 68.97
Hepa 60.00 66.45 66.45 60.00 66.45 66.45 58.71 66.45 66.45
Aust 85.22 85.50 85.50 85.22 85.51 85.51 81.30 83.33 83.33
AD1 96.67 96.82 96.89 96.88 97.22 97.24 96.18 96.77 96.46
AD2 97.14 97.33 97.42 97.33 97.51 97.41 97.56 97.48 97.27
Average 74.60 75.05 75.24 79.25 79.33 80.03 74.85 77.76 78.26
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tain or even improve the classification accuracy of data sets. Moreover, the classification accuracy of the reducts generated
using algorithm MIFSA in the three classifiers is extremely close or even slightly higher than that of the reducts generated
using algorithm MHFS for most data sets, as fully illustrated by their average values. Notably, for the data set Libras, the
reduct produced by algorithm MIFSA is significantly higher in terms of classification accuracy than that produced by algo-
rithm MHFS in each classifier. Hence, Table 8 indicates that the reduct generated by algorithm MIFSA is feasible.

6.1.2. Efficiency evaluations
In this subsection, we evaluate the efficiency of algorithm MIFSA by comparing the computational time and speed-up

ratio of algorithms MIFSA and MHFS. For each data set in Table 6, 50% of the objects are randomly selected as the original
object set. Then, different test sets are constructed by adding varying proportions of objects from the remaining 50% objects
to the original object set, i.e., 10%, 20%, 30%, 40%, and 50% of the objects from the remaining 50% objects are added to the
original object set. Therefore, we can obtain five new data sets with different sizes in the proportion to 60%, 70%, 80%,
90%, and 100% of the data sets.

(1) Comparison of algorithms MIFSA and MHFS in terms of computational time
Each data set obtains five new data sets with different sizes. These data sets are used to determine the computational
time of algorithms MIFSA and MHFS. Fig. 2 shows the detailed change trend lines of the two algorithms with the
increasing size of different data sets. The abscissa represents the size of added data sets, and the ordinate represents
the computational time value. The computational time of algorithm MHFS is depicted by lines with hollow dots, and
that of algorithm MIFSA is depicted by lines with solid dots.
As shown in Fig. 2, the computational time of algorithms MHFS and MIFSA increases as the size of the incremental
object set increases. Each sub-figure indicates that the computational time of algorithm MIFSA is significantly shorter
than that of algorithm MHFS. Moreover, as the proportion of the added object set increases, the growth trend of the
time consumed by MIFSA is slower than that by MHFS. For the AD1 and AD2 data sets, the computational time of algo-
Fig. 2. The comparison of computational time between algorithms MHFS and MIFSA versus different ratio size of adding objects.
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rithm MIFSA is approximately 50% that of algorithm MHFS. Hence, we can conclude from Fig. 2 that algorithm MIFSA
can calculate the reduct within a shorter time when adding multiple objects, and the effect of saving time is highly
evident.

(2) Evaluation of the efficiency of algorithm MIFSA in terms of speed-up ratio
In this subsection, we demonstrate the efficiency of algorithm MIFSA from the aspect of speed-up ratio. We compute
the speed-up ratio of each data set on the basis of the results shown in Fig. 2. The experimental results are presented in
Fig. 3, where the abscissa denotes the size of the added data sets and the ordinate denotes the value of the speed-up
ratio.

As shown in Fig. 3, algorithm MIFSA is at least nearly two times faster than algorithm MHFS on all the data sets. Notably,
on some data sets, such as Post, Iris, and Robot, algorithm MIFSA is even ten times faster than algorithm MHFS. The exper-
imental results prove again that algorithm MIFSA exhibits better performance than algorithm MHFS in computing a feasible
reduct.

6.1.3. Summary
From the comparisons of effectiveness and efficiency between algorithms MIFSA and MHFS, a conclusion can be drawn

that algorithm MIFSA is better than algorithm MHFS. When adding multiple objects to a HODS, we study the update mech-
anism of the neighborhood dominance relation matrix and its diagonal matrix that are the basis for calculating MNDCE (see
Corollary 1). Therefore, we can efficiently update MNDCE by improving its computational efficiency, and consequently, effi-
ciently obtain the reduct of a HODS. Algorithm MIFSA uses previous knowledge, and thus, avoids recalculation. By contrast,
algorithm MHFS retrains a changed data set, which does not use knowledge generated in the original data set, and performs
numerous repeated calculations. The computational time required to obtain a feasible reduct by algorithm MIFSA is consid-
erably shorter than that required by algorithm MHFS. Hence, algorithm MIFSA can effectively obtain a feasible reduct with-
out reducing the classification accuracy of the raw feature set.

6.2. Performance evaluations of algorithm MIFSD when deleting multiple objects

In this subsection, we compare the effectiveness of algorithms MIFSD and MHFS from two aspects: reduct size and its
classification accuracy. The efficiency of algorithms MIFSD and MHFS is compared in terms of computational time and
speed-up ratio. The specific experimental design is described as follows.

6.2.1. Effectiveness evaluations
In this subsection, we compare the effectiveness of algorithms MIFSD and MHFS. For each data set in Table 6, we ran-

domly select the 50% objects as deleted objects. The details of the experiments are given as follows.

(1) Comparison of algorithms MIFSD and MHFS in terms of reduct size
We compare the effectiveness of algorithms MIFSD and MHFS in this subsection. For each data set in Table 6, we ran-
domly select 50% of the objects as deleted objects. The details of the experiments are presented as follows.
Table 9 shows that the NFR and reduct generated by algorithms MHFS and MIFSD are extremely close. In fact, NFR and
reduct are identical in some data sets, such as Iris, Wine, Car, Aust, AD1, and AD2. Moreover, the FRR of the two algo-
Fig. 3. Speed-up ratio of algorithm MIFSA.
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rithms is extremely close, with most data sets reaching more than 60%. This finding indicates that the proposed fea-
ture selection strategies based on neighborhood dominance relation are effective, and they can remove most redun-
dant features. However, the running time of algorithmMIFSD is considerably shorter than that of algorithmMHFS. The
TRR of most data sets is above 90%. In particular, the values of TRR are all above 95% and the average value of TRR
reaches 89.8% in the data sets Iris, Wine, Leaf, Post, and Hepa. This result indicates that algorithm MIFSD can compute
a reduct within a considerably shorter time.

(2) Comparison of algorithms MIFSD and MHFS in terms of classification accuracy
Here, we compare the classification performance of the reducts generated using algorithms MIFSD, reducts generated
using algorithms MHFS, and the raw feature set. On the basis of a 10-fold cross-validation, we use the classifiers OCC,
J48, and RT in Weka [10] to calculate the classification accuracy of the raw feature set and the selected reducts in
Table 9. The experimental results are recorded in Table 10.

As shown in Table 10, the classification accuracy of the reducts generated using algorithms MHFS and MIFSD in most data
sets is extremely close to or slightly higher than that of the raw feature set. This finding proves that the neighborhood dom-
inance relation-based feature selection strategy can delete redundant features in a HODS and maintain or even improve the
classification accuracy of data sets. Moreover, the classification accuracy of the reducts generated using algorithm MIFSD in
the three classifiers is extremely close to or even slightly higher than that of the reducts generated using algorithmMHFS for
most data sets, as fully illustrate by their average values. Thus, the experimental results indicates that algorithm MIFSD can
generate a feasible reduct.

6.2.2. Efficiency evaluations
In this subsection, we compare algorithms MIFSD and MHFS in terms of computational time and speed-up ratio. For each

data set in Table 6, different test sets are constructed by deleting varying proportion of objects, i.e., 10%, 20%, 30%, 40%, and
50% of the original objects. Therefore, we can obtain five new data sets with different sizes, which contain 90%, 80%, 70%, 60%,
and 50% of the objects from the original data set to prepare for the subsequent experiments.
Table 10
The comparison of algorithms MIFSD and MHFS on classification accuracy (%).

Data sets OCC J48 TR

Raw MHFS MIFSD Raw MHFS MIFSD Raw MHFS MIFSD

Iris 97.33 100 100 97.33 100 100 100 100 100
Wine 80.90 92.13 92.13 94.38 91.01 91.01 92.13 88.76 88.76
Leaf 26.47 17.06 22.94 51.76 40.00 52.94 58.24 41.76 52.94
Libras 44.44 32.22 31.11 51.11 52.22 52.78 57.22 54.44 57.56
Robot 31.17 37.66 33.33 43.29 42.86 42.86 32.03 34.63 32.03
Mice 70.07 66.54 66.80 75.84 74.72 78.10 71.56 73.79 79.44
Car 96.19 97.23 97.23 96.19 97.23 97.23 92.96 96.19 96.19
Post 81.82 81.82 81.82 81.82 81.82 81.82 63.64 81.82 81.82
Hepa 97.44 97.44 97.44 97.44 97.44 97.44 97.44 97.44 97.44
Aust 82.32 84.93 85.51 82.32 84.93 85.51 82.90 84.64 84.64
AD1 96.02 96.13 96.13 96.60 96.42 96.42 96.19 95.10 95.10
AD2 96.50 96.53 96.53 97.00 96.47 96.47 96.41 95.18 95.18
Average 75.06 74.97 75.08 80.42 79.59 81.05 78.39 78.65 80.09

Table 9
The comparison of reducts of algorithms MIFSD and MHFS.

Data
sets

MHFS MIFSD TRR
(%)

NFR Reduct FRR
(%)

Times
(ms)

NFR Reduct FRR
(%)

Times
(ms)

Iris 1 3 75.0 281 1 3 75.0 1 99.6
Wine 5 4,8,10,11,12 61.5 332 5 4,8,10,11,12 61.5 8 97.6
Leaf 4 5,6,9,12 73.3 491 4 2,5,9,12 73.3 21 95.7
Libras 9 1,6,19,33,42,64,75,80,90 90.0 3548 11 2,7,27,33,53,54,60,70,80,85,90 87.8 392 89.0
Robot 5 1,2,16,45,72 94.4 3975 4 39,40,42,85 95.6 279 93.0
Mice 13 29,30,34,40,41,44,45,46,49,54,57,65,68 80.9 32013 10 1,30,34,40,41,44,46,49,57,68 85.3 2794 91.2
Car 5 1,2,4,5,6 16.7 820 5 1,2,4,5,6 16.7 150 81.7
Post 2 3,6 75.0 283 2 6,7 75.0 1 99.6
Hepa 1 1 94.7 320 1 8 94.7 4 98.8
Aust 3 1,8,12 78.6 629 3 1,8,12 78.6 54 91.4
AD1 3 1,4,7 70.0 8797 3 1,4,7 70.0 2729 69.0
AD2 3 1,4,7 70.0 11806 3 1,4,7 70.0 3462 70.7
Average 4.50 — 73.3 5275 4.33 — 73.6 825 89.8
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(1) Comparison of algorithms MIFSD and MHFS in terms of computational time
Multiple objects are proportionally deleted from the original data set for each data set listed in Table 6. The detailed
change trend lines of the two algorithms with increasing size of data sets are shown in Fig. 4, where the abscissa rep-
resents the size of the deleted data sets and the ordinate represents the computational time in each sub-figure. The
computational time of algorithm MHFS is depicted as lines with hollow dots, and that of algorithm MIFSD is depicted
as lines with solid dots.
Fig. 4 clearly shows that the computational time of algorithms MIFSD and MHFS decreases as the size of the deleted
object set increases. From each sub-figure, the computational time of algorithm MIFSD is significantly shorter than
that of algorithm MHFS. This finding indicates that algorithm MIFSD can compute a reduct within a considerably
shorter time.

(2) Evaluation of the efficiency of algorithmMIFSD in terms of speed-up ratio
The efficiency of algorithmMIFSD is illustrated in term of the speed-up ratio. The experimental results are presented in
Fig. 5, where the abscissa represents the size of the deleted data sets and the ordinate represents the speed-up ratio.We
can observe from this figure that for the data sets Iris, Post, and hepa, the time taken by algorithm MHFS considerably
exceeds that of algorithmMIFSD. Hence, we only shown the speed-up ratio of the remaining nine data sets in Fig. 5.

Fig. 5 shows that algorithmMIFSD is at least nearly four times faster than algorithmMHFS for all the data sets. Moreover,
when data sizes is reduced, the speed-up of most data sets remains stable. Furthermore, we notice that algorithm MIFSD is
approximately 14 times faster than algorithm MHFS on average. The experimental results verify that algorithm MIFSD exhi-
bits better efficiency in computing the reduct in a HODS than algorithm MHFS.
Fig. 4. The comparison of computational time between algorithms MHFS and MIFSD versus different ratio size of deleting objects.
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6.2.3. Summary
We can draw the conclusion that the incremental algorithm outperforms algorithmMHFS by evaluating the effectiveness

and efficiency of algorithm MIFSD. The incremental mechanism is fully investigated by obtaining the neighborhood domi-
nance relation matrix and its diagonal matrix when multiple objects are deleted from a HODS. Similar to the case of adding
multiple objects, quickly updating the neighborhood dominance relation matrix and its diagonal matrix can improve the effi-
ciency of calculating MNDCE, enhancing the efficiency of obtaining the reduct of a HODS. Algorithm MIFSD obtains a new
reduct on the basis of previous knowledge, avoiding recalculation. By contrast, algorithm MHFS is used to retrain the chan-
ged data set as a new one and does not use knowledge generated from the original data set. Thus, algorithm MHFS performs
numerous repeated calculations. The computational time required to obtain a feasible reduct by algorithm MIFSD is consid-
erably shorter than that required by algorithm MHFS. Hence, a feasible reduct can be obtained more efficiently by algorithm
MIFSD than by algorithm MHFS.
7. Conclusion

DNRS considers the degree of preference on the basis of DRSA, which can robustly handle MCDM of heterogeneous data.
This study investigated incremental heterogeneous feature selection approaches for dynamic ordered data sets in DNRS
framework. The incremental feature selection algorithms MIFSA and MIFSD proposed in this work are composed of two
aspects: non-monotonic feature selection strategy and the updating mechanisms of MNDCE. Experiments are conducted
to compare the effectiveness and efficiency of the proposed incremental algorithms with a non-incremental algorithm.
The experimental results show that the proposed algorithms can quickly obtain an effective reduct from dynamic heteroge-
neous ordered data sets. However, the criteria may be fuzzy in MCDM. DNRS does not consider the fuzziness of the criteria,
motivating our further research. In the future, we will study fuzzy dominance relation based neighborhood rough set and
develop an incremental feature selection algorithm based on it.
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Appendix A

In this part, we list the corresponding explanations of the symbols and abbreviations used in this paper in Tables 11 and
12, respectively.
Table 12
The description of abbreviations.

RST Rough set theory MIFSA Matrix-based incremental feature selection algorithm while adding
multiple objects

DRSA Dominance-based rough set approach MIFSD Matrix-based incremental feature selection algorithm while deleting
multiple objects

MCDM Multi-criteria decision-making NFR Number of features in the reduct
HODS Heterogeneous ordered decision system FRR Feature reduction rate
DNRS Dominance-based neighborhood rough set TRR Time reduction rate
NDCE Neighborhood dominance conditional entropy OCC Ordinal class classifier
MNDCE Matrix-based neighborhood dominance conditional

entropy
RT Random tree

MHFS Matrix-based heuristic feature selection algorithm UCI University of california at irvine

Table 11
The description of symbols.

U A non-empty finite set of objects NPd Cl�t
� �

=NPd Cl�t
� �

The lower approximations of Cl�t =Cl
�
t on P

C A conditional feature set NH�djPd
Uð Þ The neighborhood dominance conditional entropy of P

to d
P=B A conditional feature subset sig�Uinner a; P;dð Þ The inner significance of a in P

d A decision feature sig�Uouter a; P; dð Þ The outer significance of a to P

H� A heterogeneous ordered decision system R�Pd
U

The neighborhood dominance relation matrix on P

k1; k2 Two given parameters (0 < k1 < 1, k2 > 1) R�Pd
U

The neighborhood dominance relation matrix on P

N�Pd The neighborhood dominance relation on P rPd

i;jð Þ The characteristic function of the R�Pd
U

d̂P x; yð Þ The distance between x and y on P D�Pd
U The diagonal matrix matrix of the R�Pd

U

d A given threshold d 2 0;1½ � dPdi;jð Þ The characteristic function of the D�Pd
U

N�d The dominance relation on d
D�PdU

� ��1 The inverse matrix of the D�Pd
U

NþPd xð Þ=N�Pd xð Þ The neighborhood dominating/dominated set
of x on P

MNH�djPd Uð Þ The matrix-based neighborhood dominance
conditional entropy

Nþd xð Þ=N�d xð Þ The dominating/dominated set of x on d Msig�Uinner a;B; dð Þ The matrix-based inner significance of a in B

Clt A decision class Msig�Uouter a;B;dð Þ The matrix-based outer significance of a to B

Cl�t =Cl
�
t

The upward/downward union of decision class
Clt

RedU A reduct on U

NPd Cl�t
� �

=NPd Cl�t
� �

The upper approximations of Cl�t =Cl
�
t on P
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